
Natural Language Processing

Advanced Neural Network Language Models

Tianxing He
goosehe@cs.washington.edu

Outline

2

• Continue on RNN

• LSTM/GRU

• Seq2seq Model

• Attention

• (Briefly) Transformers and pretrained LMs

From last lecture, if you feel deep learning is magical…
• You are probably right!

• Nobody thinks DNN would work until Geoffrey Hinton.

• Nobody thinks RNN would work until Tomas Mikolov (gradient clipping).

• Dropout is originated from a bug in the code…

• A lot of other examples…

• A ton of receipe and tricks in this field simply because it worked.

• Just grasp the definitions of different NN modules, at some point, you will get used to these. 3

Heads-up

• In this lecture we will switch context between classification or
(autoregressive) generation. Please be prepared.

• For example, BERT is more about classification (sentence encoding),
and GPT is more about autoregressive generation.

4

Recap: Recurrent neural network language model

5

• Complete formulation:
ℎ! = 𝜎 𝑊"#𝑥! +𝑊##ℎ!$% + 𝑏#
y! = softmax(𝑊#&ℎ! + 𝑏&)
L w = ∑"−log𝑃(𝑤"|𝑤'.."$%)

• It’s efficient: During training, we just feed the sequence (sentence) once into the RNN, and we get
the output (loss) on every timestep.

𝑥! = embed(𝑤!)

ℎ!

𝑥"

ℎ"

𝑥#

ℎ# ……

𝑃(𝑊"|𝑤!) 𝑃(𝑊#|𝑤!𝑤") 𝑃(𝑊$|𝑤!𝑤"𝑤#)

Generation with RNNLM

6

• We can do text generation with a trained RNNLM:

• At each time step 𝑡, we sample 𝑤! from 𝑃(𝑊!| …), and feed it to the next timestep!

• LM with this kind of generation process is called autoregressive LM.

𝑥! = embed(𝑤!)

ℎ!

𝑥"

ℎ"

𝑥#

ℎ# ……

𝑃(𝑊"|𝑤!) 𝑃(𝑊#|𝑤!𝑤") 𝑃(𝑊$|𝑤!𝑤"𝑤#)

Sample 𝑤" Sample 𝑤#

A Beginning-of-sentence
(BOS) token

Gradient exploding and gradient vanishing

7

• In BPTT, we could meet two serious problems. They are called gradient exploding (error vector
become too large) and gradient vanishing (error vector become too small).

• Gradient exploding is more serious because it makes training impossible.

𝑥! = embed(𝑤!)

ℎ!

𝑥"

ℎ"

𝑥#

ℎ#

−log𝑃(𝑤"|𝑤!) −log P(𝑤|𝑤!𝑤") −log𝑃(𝑤$|𝑤!𝑤"𝑤#)

𝑥$

ℎ$

−log𝑃(𝑤$|𝑤!𝑤"𝑤#)

BP through time…. (reversed!)

we	get	the	following	during	error vector derivation:

23!
24"

= 23!
24!

𝑊44
567

.

Further approximation!	just think	everything (especially 𝑊##)	as	a	scalar…
when t is large and 𝑊## < 1: Gradient Vanishing!
when t is large and	𝑊## > 1: Gradient Exploding!

𝑊%%
ℎ&'# ℎ&'" ℎ&𝑊%%

𝐿&

……
𝑊%%

ℎ"

Intuition: Gradient exploding and gradient vanishing
To give some intuition about the reason, we make two crude simplifications:
(1) Ignore the activation function: ℎ! = 𝑊##ℎ!$% +𝑊"#𝑥! (2) only consider loss at time t: 𝐿!

Gradient clipping for the exploding problem

9

It’s simple!
Assume we want to set the maximum norm of gradient to be 𝛾

clip ∇𝐿 = min 1,
𝛾
∇𝐿

Q

∇𝐿.

In practice, 𝛾 is a hyper-parameter, and is usually set to be 1 or 0.5.

(Brief) Word2vec
• Diverge topic a bit….
• The Word2vec project shows that if we just
want the word embeddings, it can be trained
in a very efficient way.

• Its training adopts the principle of
distributional hypothesis:

10

Word2Vec: The vector arithmetic

• We found the trained embeddings have amazing
arithmetic properties.

• For example:
• emb(king)-emb(man)+emb(woman)=emb(queen)!

11

Word2Vec for initialization

• The training of word2vec can be done very efficiently on large
unsupervised data (due to speed-up techniques like negative sampling).

• A good strategy: First pretrain a set of good word embeddings with a very
large corpora. Then use it to initialize the embedding layer of your NN
model. And finally finetune it on labeled data (e.g., for classification).

12

LSTM(skip) or GRU for gradient vanishing
• Historical note: The LSTM (long-short term memory) network was first
used in (Sundermeyer et.al. 2012), dealing with the g-vanishing problem.
• Then, GRU (gated recurrent unit) is proposed as a simplification of LSTM.
• We will discuss GRU because it’s simpler and has the same core idea.

13Recommend: Colah’s blog on Understanding LSTM Networks

Gated recurrent unit for gradient vanishing

14

<-Let’s just focus on this line

GRU is by itself, a small neural network, input: 𝑥&,ℎ&'" , output: ℎ&

𝑥&

ℎ&'"

:ℎ&
Weight matrices…

Weight matrices…

gate 1-z

gate z

ℎ&+

• Think about back-propagation from ℎ5 to ℎ567.
• There will be multiple paths, and the errors will be summed up. But in the red
path, it does not involve any weight matrix! It’s just 1 − 𝑧 ⨀ℎ567.
• This path alleviates gradient vanishing.

15

Gated recurrent unit for gradient vanishing

𝑥&

ℎ&'"

:ℎ&
Weight matrices…

Weight matrices…

gate 1-z

gate z

ℎ&+

The RNN case for reference.

Residual connection in deep feedforward NN

• (Diverge topic a bit) Similar idea can be
used to help us build deeper networks.

• Adding a direct link between hidden layers:
• ℎ!"# = ℎ! + 𝐹(ℎ!)
• F may include linear transform,ReLU,
gating, etc.

• We will revisit this residual connection in
transformers!

16

Philosophy: Combining NN modules

• We have now learnt several neural modules (rnn, lstm/gru, etc.), which
are by themselves, a small neural network. We can combine different
modules together to form a large neural model.
• For example, we build a AR-LM by stacking several GRU layers, and linking
them with a residual link:

17

ℎ&()!

ℎ&()"
GRU

GRU
Residual

ℎ&*"()!

ℎ&*"()" GRU

GRU
Residual

𝑤&

Predict 𝑤&*"

𝑤&*"

Predict 𝑤&*#

Bi-directional RNN
• In uni-directional RNN, ℎ5 has context from the “left”.
• For some applications (e.g., part-of-speech tagging), it would be useful if
ℎ5 has bi-directional context.

• We can achieve this by adding a layer of RNN with reversed direction.
• Exercise: what’s the topological order of this graph (it’s still a DAG!)?

18

ℎ𝑓&*#ℎ𝑓&

ℎ𝑟&

ℎ𝑓&*"

ℎ𝑟&*" ℎ𝑟&*#

𝑥& 𝑥&*" 𝑥&*#

ℎ& ℎ&*" ℎ&*#

Bi-directional RNN for AR-LM?
• Exercise: When we switch from a uni-rnn to a bi-rnn, and we don’t change
anything else, can we still do autoregressive language modelling?

• Answer: No! In autoregressive LM, we can not utilize information from
the future!

19

ℎ𝑓&*#ℎ𝑓&

ℎ𝑟&

ℎ𝑓&*"

ℎ𝑟&*" ℎ𝑟&*#

𝑤& 𝑤&*" 𝑤&*#

ℎ& ℎ&*" ℎ&*#

Predict 𝑤&*"? Predict 𝑤&*#? Predict 𝑤&*$?

Bi-directional RNN for sentence-encoding?
There are several ways to get a sentence encoding from a bi-rnn:
Way1: add a special token to the input.
Way2: do a max-pooling or mean-pooling of the hidden states.

20[CLS] 𝑤" 𝑤+

…

ℎ! ℎ+…

Bi-GRU

𝑝𝑜𝑜𝑙𝑖𝑛𝑔

predict

predict

Encoder-decoder model for sequence-to-sequence (seq2seq) tasks

21

• Let’s switch context a bit and think about how to build a neural model
for machine translation (MT, with is a seq2seq task).

• Example:
• Input:我(I)在(at)华盛顿(Washington)大学(University)学习(study)。
• Output: I study at University of Washington.

Encoder-decoder model for sequence-to-sequence (seq2seq) tasks

22

• We can use a bi-rnn encoder for the input sequence, and use a uni-
rnn decoder for the output.
• In BP, the errors will be back-propagated from the decoder LM loss to
the encoder.

ℎ!,-. ℎ+,-.…

𝑒𝑛𝑐(𝑖𝑛𝑝𝑢𝑡)

pooling

我(I) 在(at)
华盛顿(Washington)大学(University)

学习(study)

ℎ!/,.

[BOS]

ℎ"/,.

I

Predict I Predict study

ℎ#/,.

study

Predict at

…

The attention mechanism: motivation

23

• Currently, all information in the input is condensed into a single vector.
• However, in tasks like MT, we may want to pay attention to different parts of the input
in different timesteps.

• And this alignment is not trivial!
• The attention module is proposed to learn this alignment in an end-to-end fashion.

ℎ!,-. ℎ+,-.…

我(I) 在(at)
华盛顿(Washington)大学(University)

学习(study)

ℎ!/,.

[BOS]

ℎ"/,.

I

Predict I Predict study

ℎ#/,.

study

Predict at

attention
𝑒𝑛𝑐(𝑖𝑛𝑝𝑢𝑡)

The attention mechanism

24

ℎ!,-. ℎ+,-.…

我(I) 在(at)
华盛顿(Washington)大学(University)

学习(study)

ℎ&'"/,. ℎ&/,.

𝑤&

Predict 𝑤!"#

𝑤&'"
+

𝑎$
𝑎#

𝑎%

• We now focus on timestep 𝑡.
• For each encoder state ℎ")*+ , we compute an alignment score R𝑎" = ℎ")*+ ,𝑊-ℎ!$%.)+ .

• Then we get an attention distribution 𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 R𝑎 .
• We can then reweight the encoder states by 𝑎 and pass ∑" 𝑎"ℎ")*+ to the decoder.
• The parameter 𝑊- is shared across time steps.

Attention: learned alignment example

25

The transformer model (in a high-level)

26

• In 2017, Google says “attention is all you need”, and proposes
the transformer model.

• Over the years, it has become the most successful NN
architecture in NLP.

• And it has been adopted later by the famous pretrained LM
like BERT or GPT.

• We only have time to go over it in high-level today, but I
recommend everyone to a great blog.

• The Annotated Transformer:
https://nlp.seas.harvard.edu/2018/04/03/attention.html

The transformer model (in a high-level)

27

• Actually, the transformer model is not that mysterious or magical.

• It will be easier to view it as a smart combination of modules (attention, residual block, dropout, layer-
norm, etc.).

• From a very high level, the transformer is kinda like a multi-layer bi-RNN, giving encoding for each token.

• It is composed of a number of layers, each layer is called a “TF block”.

ℎ!()! ℎ"()! ℎ+()!

𝑤! 𝑤" 𝑤+

…

ℎ!()0

…

ℎ"()0 ℎ+()0

…

…

…

A TF block

28

ℎ!()! ℎ"()! ℎ+()!

𝑤! 𝑤" 𝑤+

• A TF block has two sub-layers.

• First, a self-attention (a complicated version of attention) layer to exchange information among
different timesteps.

• Then, a feedforward module to transform the encodings.
• Finally, there are dropout & layer-norm & residual links added to ease the optimization.

Self-attention.

ℎ!()" ℎ"()" ℎ1()"

Linear & non-linear operations

…

…

…

…

For AR-LM: Causal mask for self-attention

29

ℎ!()! ℎ"()! ℎ+()!

𝑤! 𝑤" 𝑤+

Self-attention.

ℎ!()" ℎ"()" ℎ1()"

Linear & non-linear operations

…

…

…

…

• To do auto-regressive LM, we need to apply a “causal” mask to self-attention, forbidding it from getting
future context.

• At timestep t, we set 𝑎" = 0 for 𝑖 > 𝑡.

The transformer model (in a high-level)

30

Remarks:
• The name “attention is all you need” is mostly because there’s no RNN module
and its job is left to the self-attention layer.

• The transformer model is good at scaling: training a deeper model with larger
amounts of data, usually gives visible performance gain.

• We did not cover deep learning regularization techniques (dropout, layer-norm,
etc.) Please find online resources about them, for example:

• https://medium.com/techspace-usict/normalization-techniques-in-deep-
neural-networks-9121bf100d8

• https://www.deeplearningbook.org/ Chapter 7 & 8.

https://medium.com/techspace-usict/normalization-techniques-in-deep-neural-networks-9121bf100d8
https://www.deeplearningbook.org/

The GPT models from OpenAI

31

In recent years, OpenAI released a series of large
pretrained LMs, GPT, GPT2 and GPT3. (generative
pretrained transformer)

They are basically larger and larger autoregressive
transformer LM trained on larger and larger
amounts data.

They have shown amazing language generation
capability when you give it a prompt (aka. prefix,
the beginning of a paragraph).

Generation example from the GPT2 model

32

A sample from GPT2 (with top-k sampling)

The top-K sampling algorithm

33

Wewill represent 𝑃(⋅ |𝑊7..H) by 𝑝 = 𝑝7, 𝑝I, … , 𝑝 J , where the	elements	is	
sorted	that 𝑝7 ≥ 𝑝I ≥ 𝑝K… ≥ 𝑝|J| .
Top-K sampling transforms 𝑝 to �̂� by:

K𝑝H =
𝑝H ⋅ 1{𝑖 ≤ 𝐾}

𝑍
And we sample𝑊HL7from �̂� .

<- from
https://huggingface.co/blo
g/how-to-generate
Recommended-reading!

Examples from the GPT2 model

34

• Prompt: MIT is a private research university in Cambridge, Massachusetts. It is one of the best
universities in the U.S.,

• GPT2 with naive sampling: but the teaching of traditional African-American studies and African-
American literacy continued. Soon thereafter, MIT was renamed The International Comparative
University by Lord (then), …

• GPT2 with topk40 sampling: and the home of most of the top international universities in the
world. Our alumni are internationally renown, but our mission is unique. We are the only university
in the world where there is a chance to take on the challenge of making an impact, …

• topk40 another sample: with a reputation for innovation and open and flexible public systems. Its
principal research area deals with autonomous vehicles, robotics and artificial intelligence. To date,
MIT has published 40 peer-reviewed papers on this topic, …

• Message: sampling algorithms provide a sweet quality-diversity trade-off.
• (which is the key difference to decoding e.g., beam-search)
• I did not do cherry-pick.

BERT

35

• In 2019, Google released the BERT (Bidirectional Encoder Representations from Transformers) model.

• It’s a large transformer encoder pretrained on huge data with the masked LM objective.

• Superior performance is shown once finetuned on downstream NLUnderstanding tasks.

BERT: Masked LM objective

36

ℎ!()! ℎ"()! ℎ+()!

I study home

…

ℎ!()0

…

ℎ"()0 ℎ$()0

…

…

…

<mask>

ℎ#()0

Predict at

• MLM can be viewed as a bi-directional version of next-word prediction in AR-LM.

• We mask a portion of words in the sentence, pass it to the transformer encoder, and predict
the masked words.

The pretrain-finetune paradigm

37

• The pretrain-finetune paradigm has become a foundational paradigm in NLP.

• Just pick a pretrained LM, and finetune (continue training) it on the downstream task you care about.

BERTology
• Pick your favourite PLM! (this figure is not up-to-date)

38

Huggingface examples about finetuning PLM

39

• Huggingface is an amazing organization trying to make the use of pretrained LM easier.

• Finetune gpt2:
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-
modeling/run_clm_no_trainer.py

• Finetune bert:
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification

• This maybe the most attractive homework in this lecture!

• To run large models you will need GPU machine, the google-colab might be a good toy testbed
(change the runtime to GPU).

Looking for bigger challenges? Try read some papers!

40

I can recommend these two papers (ofc there are many many more good papers!).

A little more about me:
I work in neural language generation.
https://people.csail.mit.edu/cloudygoose/

Thanks!

41

