N W ———
OF COMPUTER SCIENCE & ENGINEERING

Natural Language Processing

Neural Network Language Models

Tianxing He

goosehe@cs.washington.edu



N ————
OF COMPUTER SCIENCE & ENGINEERING

Outline

 Basics of neural network (~¥35min, tough, involves math)
* Feedforward NN LM

* Recurrent NN LM

* Word2vec (briefly, if time permits)
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Brief Review: logistic regression (LR)

* To understand today’s content in neural network, it will be super helpful to
review the basic formulations from the LR model.

© T (;W’“’) +b P&y =1I0) = 0(2) =

Z = w-x+b

1+e2
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Review: A general recipe
for multi-class classification

* Before we dive into NN and NLP, let’s review a general recipe for multi-class

classification. It’s super important for understanding of almost everything
covered in these two lectures!

* Take 3-class sentiment classification as an example.
This restaurant is great! —> positive
The food is okay. -> neutral

| hate this dish! -> negative



e o s v
A general recipe for classification:
Encode, Predict, Train

* Stepl: Encode

e.g., 0.1,0.3,-0.5,...

* Assume we have an encoder(e.g., a neural network) N

which maps the input x to a D-dim vector h.

1)

How to realize this NN encoder will be clear soon! X:This restaurant is great!



e o s v
A general recipe for classification:
Encode, Predict, Train

e Step2: Predict

* We apply a linear transform to reduce enc(x) to a 3-dim vector, each dimension
represents one class.

b: dim-3 z: dim-3

Note: the h and b h
a;iomﬁm 32ctors_ere 7 = WClSh + bClS <- a 3-by-D linear transform
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Comparison with logistic regression

Linear—transform for multi-class prediction LR for binary classification

Positive N
Neutral [

Negative

(=] (Z>”’

z = w-x+b

&3

LR slide, page40
If we focus on one dimension(red), it’s the

same as binary LR!
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Encode, Predict, Train

* In order to do maximum likelihood training, we need a probability distribution.
* Now, we use the Softmax operation to map z to P(y|x).

softmax(z) = :xp (21) : :xp (22) s kexp ()
D_im16Xp(zi) D i1 exp(zi) D i=1 €Xp (2i)
softmax(z,-) = kCXp (Zi) | S I S k <- k is the number of classes.
D i—1€xp(z))
Example:

z=100.6,1.1,—1.5,1.2,3.2, —1.1]
softmax(z) = [0.055,0.090,0.006,0.099,0.74,0.010]
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Connection of softmax and sigmoid

e Softmax can regarded as a multi-class version of sigmoid

exp (z1) exp (22) exp (zx)

S exp(z) Sijexp(z) Db exp(z)

softmax(z) =

* Sigmoid is a softmax of zand O

1 e
O-(Z) — 1+e~2 — eZ+el

Z

LR slide, page42



N W e
OF COMPUTER SCIENCE & ENGINEERING

Encode, Predict, Train

* The training part is the same with LR (in high-level)!
* Assume we have a dataset {x;, y;}.
* We use the cross-entropy loss:

Lecg = X —logP(y = yilx;)

* Assuming the model is differentiable, we use stochastic gradient
descent to train the parameters 6. (W 1Sand b Sare part of 6)
G,

gt+l = gt — %LCE(mini-batCh{xi,yi})

10
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Review of the model: What’s left?

—
« We did not talk about the encoder!

Linear

Transform

* |t’s time to introduce neural network!

-

x: This restaurant is great!

11
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Philosophy (mind-set) of Neural Networks for NLP

* In previous lectures, we talked about smart ways for extracting
features for word/sentence.

* They need some level of algorithm design or hand crafting.

¢ sy Xy=2
Singular Value Decomposition (SVD) o
gl e
o Solution idea: It's@key There are v1rtually@'surprlses and the writing is Gecond-ra.
ol Ie)n ' ea'_ o _ _ _ So why was it so@njoyable ? For one thing , the cast is
o Find a projection into a low-dimensional space (~300 dim) ) . Anothe ouch is the music @Nas overcome with the urge to get off
o That gives us a best separation between features the c0uch and start,dancing . It sucked @ ~apd it'll do the same to GO0 .
Documents S o 2. -
T R e
1 S 6"
Terms| A =| U X\ \A
Ve Var Definition Value
X1 count(positive lexicon) € doc) 3
mxn mxr rxr xn ) count.(negative lexicon) € doc) 2
A = U D VT B A i 1
0 otherwise
% x4 count(1Ist and 2nd pronouns € doc) 3
{ 1 if “I” € doc
X5 . 0
orthonormal diagonal, sorted 0 otherwise
x¢  log(word count of doc) In(66) =4.19
52 Undergrad N 202
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Philosophy (mind-set) of Neural Networks for NLP

* When using neural networks, we leave these smart feature extraction
techniques behind, and just feed (almost) raw data into the NN.

 And we let NN and SGD “learn” a good feature extraction from data.

* Instead, what we care about now are:

° 1: Use 3 powerful NN architecture <- our focus in these two lectures!
Let’s start with the simple ones

e 2: Use large amounts of data g

* 3: Use a right learning objective

13
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Bag of words as input

* First we need to encode the input x as a vector...

* Bag of words is a simple way to encode a sentence:

* a |V|-dim vector, the i-th dimension indicates whether the i-th word in
V(vocabulary) exists in x.

* This restaurant is great! Will be mapped to:
* O(a) O(the) ... O(that) 1(this) O .... 0O(amazing) 1(great) O ...... <- We denote this vector as X.

* Note: We can easily extend bag-of-words to bag-of-bigrams, which is |V|*2-dim.

14
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Input dimension reduction via word embedding

e |V| is usually very large!! (at least 10k) We want to reduce it to a reasonable dimension
D (e.g., 512).

* A simple way to do this is to multiply it with a D-by-|V| word embedding matrix:
hO — Wembedf

3 s

—
[

Wembed(col-0)
Wembed(col-1)
Wembed(COI'Z)
Wembed(C°|'3)
Wembed(col-4)
Wembed(col-5)
Wembed(col-1)
Wembed(col-4)

oO|lr|OCO|OC |, |O

* Note: The difference with LSA is that here the word embedding matrix is treated as part
of the parameters of the NN model, and is learned by SGD.

15
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A neural unit for feature extraction

Divide and conquer:

In order to do the final prediction, we want to extract some easy binary feature first.
Examplel: does x contain positive words (good, amazing, etc.) ?

Example2: does x contain negation words (not, never, etc.) ?

This kind of low-level features can be extracted by a neural unit (aka., neuron), which is just a

|
LR model !! Output value y <-The outputy of this single neuron is a scalar value.

Non-linear transform

Weighted sum e

WEightS W W» W

y =oa(w'x + b)

bias

Input layer  x; X, X3

16
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One hidden layer of neural network

* A layer of D neurons consists a hidden layer.

hl = g(WOhO + h0)

We aggregate the weights into W°.
The i-th row in W° corresponds to the
weight w in the i-th neuron whose

output is h; .

17
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Stacking multiple hidden layers

Intuition:
High-level feature
(semantic, etc.)

Notation: The “2” here does not mean

squared. It means the second layer. h% hl @

h? = g(Wh! + bY)

Low-level feature
(syntactic, etc.)

ht = g(WOhO + b°)

Raw feature
(n-gram, etc.)

This is called a multi-layer perceptron (MLP) or a feedforward neural network.
It’s the simplest type of neural network. (we will learn about more complicated ones in these two
lectures)

18



Choice of activation function
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* The sigmoid function o is one type of activation function.

1.0

0.8

Sigmoid v y=1/(1+e?)
1 Y
y_o-(z)_H—e_Z |
0.03 r -4 =) % 2 4 b
10
.y =max(z,0)
RelLU 5
%

Rectified Linear Unit

]

< 0
g
g

|

y=

~

-5

~105 = 0 5 10

8

tanh

1.0
& — e %
0s Y — —
= e+ e ¢
r
& 0.0
et
]
>
-0.5
1—010 -5 0 5 10

Tanh and ReLU have been empirically shown
to outperform sigmoid.
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Real neurons in brain

Cell body

Axon Telodendria &
V ‘ ‘.' 2

: Axon hil@\& Synaptic terminals

_‘__N.-.\". .

—

$

Remember that we \'
are doing “artificial” {
neural network.

Nucleus

| don’t think there’s .
any transformer or Endoplasimic ‘

. . reticulum
Istm in our brain!

Golgi apparatus

Output value

ﬁ Non-linear transform

Weighted sum

A\ >4
Mitochondrion \\ Dendrite

Weights w, /Wy Wy

/ | \ Dendritic branches Input layer  x;

By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830
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The importance of non-linearity

A linear transform (e.g., y = Wx) can only give a linear decision boundary.
And the stacking of linear transforms (e.g., y = W, W,W5x) is still a linear transform.
The existence of non-linearity in NN is the key reason to make it powerful.

Decision
f Boundary
) ) | \
/ 1 )
o v d
O O Vs \ O O 4
O~ O O ’ |
O 4 O O \ /0 Figure from
’ O O O \ O 4 O https://towardsdatascience.com/I
O ¢ ™ ~ o O O ogistic-regression-and-decision-
,' O O O O boundary-eab6e00c1e8
’ O O
> >
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Summary: a NN model defines a series of computation

56
log-softmax
ﬁ S5
_ cls cls
-H h* + b < <- We call this a computational graph of a NN model.
' h? =o(a?)
S3 It defines the dependency of (intermediate) variables.
a? = W'h! + b? And it’s a directed acyclic graph (DAG).
52
ht = g(al)
<1 In order to compute all values, we only need to follow
2 = WORO + O the topological order.
S0

0 _ ~
h® = Wembedx

22
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How to get the topologically sorted order
Blackboard Example (we will need this for recurrent NN!)

23
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How to get the topologically sorted order (from wiki)

Kahn's algorithm [ edit]
Not to be confused with Kuhn's algorithm.

One of these algorithms, first described by Kahn (1962), works by choosing vertices in the same order as the eventual topological sort.[?! First,
find a list of "start nodes" which have no incoming edges and insert them into a set S; at least one such node must exist in a non-empty acyclic
graph. Then:

L « Empty list that will contain the sorted elements
S « Set of all nodes with no incoming edge

while S is not empty do
remove a node n from S
add n to L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other incoming edges then
insert m into S

if graph has edges then

return error (graph has at least one cycle)
else

return L (a topologically sorted order)

24



Back-propagation (Goal)

Now, to do SGD we need to get gradient for the
parameters 8 = {W°s, pcls W1 pt, WO, po, wembedy

Remember our loss is L = —logP(y|x).

First, we will use the back-propagation algorithm to get
oL 9L 4L 4L OIL O

L
0z’ 0h?2’0a?2’ont’ dal’ aho}'
Note: the error vectors are row vectors.

the error vectors {

oL 0L 0z
) . . I Y H H | _—
Don’t be intimated! It’s just chain rule! e.g., 3hZ — 35 N2
a_L 0z

57 32 is just the derivative

Assume we have computed
of a simple linear function.
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log-softmax

% 7 = Wclshz 4+ bcls

' h? = o(a?)

a? = W'h' + b’

Kl = o(al)

a' = WOhO + b°

h0 = pembeds

25
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Back-propagation (Derivative of each step)

L=log P(y|x)

; log-softmax
% 7 = Wclshz 4+ bcls
h? = o(a?)

a? = W'h' + b’

Remember that NN consists of a series of relatively simple function (e.g.,
linear transform or sigmoid).

The Jacobian of each function can be easily derived by applying basic
calculus.

For example:
da? OWlhl+pl : :
eql: aZl == = W1 <- for today, just remember this one

odlogP(y|x dlog-softmax(z
eq2: 218 (r|x) _ Olog @)y

I = (softmax(z) — )T, where ¥ is the

0z 0z
one-hot encoding of ground-truth label y.
2 2
eqg3: 322 = a;g; ) — diag[o(a?)®(1 — a(a?))],where @ is element-

wise multiplication.
27
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Back-propagation (error vector computation)

* Now, we have everything we need to compute the error

vectors. We just follow the

* SO: compute %, by eq2 (log-softmax).

oL _ 0L 0z

Oh2 9z dh2’
oL 0L Oh?

* S1: compute

S2: compute =

da? dh? 0a?’

oL 0L dal

Sb: compute —5 = ———5

» Every step is a vector (error vector from last step)-matrix

(Jacobian) multiplication.

by eql (linear).
by eg3 (sigmoid).

log P(y|x)
log-softmax

z=Wh? + b SO

:

—
>
N
I
Q
/\
Q
N
\—’/

S1

i
N

a2 = Wipt + pt 52

l

S3

Q
-

>
[uxy

Il

Q
PN

Q
[EEY
\—/

L=wOho +p° 54

Q

Wembedf S5

=
o
I

28
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Back-propagation (error vector computation)

JoL
Remark: If we expand PTAE

oL 0L da' _ OL 0z Oh? da” dh' da?!

ohO _ dal Oh° _ 0z Oh2 d0a? 0hl dal OhO° — Wclshz + bcls

log P(y|x)
log-softmax

:

oh!

__OL 1 cls dh? 1 0 :
_a_zW EW %W <- expand the linear terms

Exercise: check this still works if the hidden layers (h°, h', h?)
have different dimensions.

I h? = g(a?®

* As we stack more hidden layers, the error vectors of lower
layers involves more matrix multiplications. This gives some
intuition why deeper NN are harder to train.

e (we will revisit this in recurrent NN)

29
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Gradient of each parameter
Grey parts for left for exercise

* Where the error vectors computed, we can apply chain rule

log P(y|x)

again to get the gradient of each parameter. ; log-softmax
* For example:
7= Wclshz + bcls
, 0L _ 9L 9a’ =(6_L)T(h1)7~ -b
oWl 9a? owl da? I h? = g(a?®
.

How? Think about each element Wi}-
a? = Wlh! + bt

GW& da? 6Wi} daf 7’

l

because W;;only affects a;.

8

oL oL ow;'hl+b} 0L Bl

where the first equation is

Q
-

=
[uxy

Il

Q
PN

Q
[EEY
\—/

a' = WOhO + b°

We also have: [ embed &
oL 0L da* _ OL ow'h'+p'  OL oL

° — — — -] = —

abl ~ 9azobl  0az  obl da? da?

]
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The tough part is over!
Relax: what it’s like in pytorch

* #Below is not real code but it’s very close:

 model = sequential(Linear, Sigmoid, Linear, Sigmoid, Linear) #defines the computation graph
e z = model(x)

* loss = log-softmax(z, y) #forward and compute loss

loss.backward() #backward and gradient computation

#print(model[0].weight.gradient)

optimizer.step() #do a SGD step

31



Brief summary

We now know how to forward and backward a feedforward NN.
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Later we will see more complicated recurrent NN, transformers, etc. But as long as we know the

structure of the computational graph, it’s the same!

Linear
Transform

x: This restaurant is great!

o

=
Z 2
<
; >
e )
@) W)
L

Output
Probabilities

Multi-Head
Attention

Nx

A y) L ¥ J )

e J . [e—)
Positional o) @ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

The graph of a
transformer
model.
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Neural Network Language Model

 We will now introduce a series of NNLM.

* Review of the trigram model:
count(w;_,, w;_1, w;)

W:lwW: - Wi _ —
CI( l| 1—2, V1 1) Count(Wi_z;Wi—l)

e Using what we have learnt, how would you build a NN version of the
n-gram LM?

33
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A feedforward NN LM

P(W;lw;_,w;_1)

I Linear & softmax

L= ) —logP (mlwigwiy)

I Linear & tanh (Wi_2,w;_q ,wj)Edata

embed(w;_,) embed(w;_;)

* Note a big difference with the sentiment classifier is that the output class number is now |V|,
making the model slow. Proposed remedies: class-based LM or noise contrastive estimation.

A Neural Probabilistic Language Model

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA
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Recurrent neural network language model

* The (F)NNLM only encodes a very limited context (n-gram).

* RNN defines an efficient flow of computation to encode the whole history wy .... wy_1.

* The RNN maintains a hidden state h; which is updated at each time step.

hy = o(Winxy + Wpphi—1 + b)

* Important: The parameters {W;;,, Wy} are shared across timesteps (hence the name recurrent).

35
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Recurrent neural network language model

* Complete formulation:
he = o(Wipxe + Waphe_1 + bp)

y¢ = softmax(Wy,hs + b,)
L(w)=2; -logP (w;|wg ;1)

 It’s efficient: During training, we just feed the sequence (sentence) once into the RNN, and we get
the output (loss) on every timestep.

P(W1|wy) P(W;|wow,) P(W3|woww,)

36
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Generation with RNNLM

* We can do text generation with a trained RNNLM:

* At each time step t, we sample w; from P(W¢]| ...), and feed it to the next timestep!

* LM with this kind of generation process is called autoregressive LM.

Sample wy Sample w,

Xo = embed(wy)

A Beginning-of-sentence
(BOS) token

37
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RNN for text classification

* The last hidden state h can be regarded as an encoding of the whole sentence, on which you can
add a linear classifier head.

This restaurant is wonderful

38



(Brief) Word2vec

 The Word2vec project shows that if we just
want the word embeddings, it can be trained
in a very efficient way.

* Its training adopts the principle of
distributional hypothesis.

“The meaning of a word is its use in the language”
[Wittgenstein Pl 43]

“You shall know a word by the company it keeps”
[Firth 1957]

If A and B have almost identical environments we say that they are synonyms.
[Harris 1954]
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INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)
\SUM
/ WY

w(t+1)

w(t+2)

39
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Word2Vec: The vector arithmetic

Country and Capital Vectors Projected by PCA

* We found the trained embeddings have amazing |
arithmetic properties. T e v
* For example: oo |

* emb(king)-emb(man)+emb(woman)=emb(queen)! s o es s

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov Tiya Sutskever Kai Chen
Google Inc. Google Tnc. Google Tnc.
Mountain View Mountain View Mountain View
mikolov@google.com ilyasu@google.com kai@google.com
Greg Corrads Jeffrey Dean
Google Inc. Google Inc. 40
Mountain View Mountain View
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Word2Vec for initialization

* The training of word2vec can be done very efficiently on large
unsupervised data (due to speed-up techniques like negative sampling).

* A good strategy: First pretrain a set of good word embeddings with a large
corpora. Then use it to initialize the embedding layer of your NN model.
And finally finetune it on labeled data (e.g., for classification).

41
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Recommended reading

* Definitely play with some pytorch (official) tutorials. (you don’t need GPU to do that)

* The deep learning book Chapter 6
 https://www.deeplearningbook.org/contents/mip.html

 The word2vec paper:

* https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b
-Paper.pdf

42
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Thanks!

* Next lecture, we will continue to LSTM, attention, transformers, etc.
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