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Outline

• Basics of neural network (~35min, tough, involves math)
• Feedforward NN LM
• Recurrent NN LM
• Word2vec (briefly, if time permits)
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Brief Review: logistic regression (LR)

• To understand today’s content in neural network, it will be super helpful to
review the basic formulations from the LR model.
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𝑃 𝑦 = 1 𝑥 = 𝜎 𝑧 =
1

1 + 𝑒!"



Review: A general recipe
for multi-class classification
• Before we dive into NN and NLP, let’s review a general recipe for multi-class
classification. It’s super important for understanding of almost everything
covered in these two lectures!

• Take 3-class sentiment classification as an example.
This restaurant is great! –> positive

The food is okay. -> neutral
I hate this dish! -> negative
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A general recipe for classification:
Encode, Predict, Train

• Step1: Encode
• Assume we have an encoder(e.g., a neural network)
which maps the input 𝑥 to a D-dim vector ℎ.
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Encoder

This restaurant is great!

D-dim h

How to realize this NN encoder will be clear soon!

e.g., 0.1,0.3,-0.5,…

x:



A general recipe for classification:
Encode, Predict, Train

• Step2: Predict
• We apply a linear transform to reduce enc(x) to a 3-dim vector, each dimension
represents one class.
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D-dim
x’

z =𝑊!"#ℎ + 𝑏!"# <- a 3-by-D linear transform

W: 3-by-D b: dim-3 z: dim-3

Note: the h and b here
are column vectors.



Comparison with logistic regression

Linear–transform for multi-class prediction

If we focus on one dimension(red), it’s the
same as binary LR!
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D-dim
enc(x)

LR slide, page40

LR for binary classification

Positive
Neutral
Negative



Encode, Predict, Train
• In order to do maximum likelihood training, we need a probability distribution.
• Now, we use the Softmax operation to map z to P(y|x).
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Example:



Connection of softmax and sigmoid
• Softmax can regarded as a multi-class version of sigmoid

• Sigmoid is a softmax of z and 0

𝜎 𝑧 = !
!"#!"

= #"

#""##
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LR slide, page42



Encode, Predict, Train
• The training part is the same with LR (in high-level)!
• Assume we have a dataset {𝑥$ , 𝑦$}.
• We use the cross-entropy loss:

𝐿%& = ∑$−log𝑃(𝑦 = 𝑦$|𝑥$)

• Assuming the model is differentiable, we use stochastic gradient 
descent to train the parameters 𝜃. (𝑊'()and 𝑏'()are part of 𝜃)

𝜃*"! = 𝜃* − +
+,
𝐿%&(mini-batch{𝑥$ , 𝑦$})
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Review of the model: What’s left?

• We did not talk about the encoder!

• It’s time to introduce neural network!
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Encoder

x: This restaurant is great!

D-dim h

Linear
Transform

z
softmax

P(y|x)



Philosophy (mind-set) of Neural Networks for NLP
• In previous lectures, we talked about smart ways for extracting

features for word/sentence.
• They need some level of algorithm design or hand crafting.
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• When using neural networks, we leave these smart feature extraction
techniques behind, and just feed (almost) raw data into the NN.
• And we let NN and SGD “learn” a good feature extraction from data.

• Instead, what we care about now are:
• 1: Use a powerful NN architecture
• 2: Use large amounts of data
• 3: Use a right learning objective
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Philosophy (mind-set) of Neural Networks for NLP

<- our focus in these two lectures!
Let’s start with the simple ones



Bag of words as input
• First we need to encode the input x as a vector…

• Bag of words is a simple way to encode a sentence:
• a |V|-dim vector, the i-th dimension indicates whether the i-th word in
V(vocabulary) exists in x.

• This restaurant is great!Will be mapped to:
• 0(a) 0(the) … 0(that) 1(this) 0 …. 0(amazing) 1(great) 0 ……

• Note: We can easily extend bag-of-words to bag-of-bigrams, which is |V|^2-dim.
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<- We denote this vector as -𝑥.



Input dimension reduction via word embedding
• |V| is usually very large!! (at least 10k) We want to reduce it to a reasonable dimension
D (e.g., 512).

• A simple way to do this is to multiply it with a D-by-|V| word embedding matrix:

ℎ! = 𝑊"#$"% $𝑥

• Note: The difference with LSA is that here the word embedding matrix is treated as part
of the parameters of the NN model, and is learned by SGD.
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A neural unit for feature extraction
• Divide and conquer:
• In order to do the final prediction, we want to extract some easy binary feature first.
• Example1: does x contain positive words (good, amazing, etc.) ?
• Example2: does x contain negation words (not, never, etc.) ?
• This kind of low-level features can be extracted by a neural unit (aka., neuron), which is just a
LR model !!
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<- The output y of this single neuron is a scalar value.

𝑦 = 𝜎(𝑤/𝑥 + 𝑏)



One hidden layer of neural network

• A layer of D neurons consists a hidden layer.
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ℎ!! ℎ"! ℎ#! ℎ$%"!…….

ℎ!" ℎ"" ℎ#" ℎ$%""…….

…….

ℎ! = 𝜎(𝑊"ℎ" + 𝑏")

We aggregate the weights into𝑊!.
The i-th row in𝑊! corresponds to the
weight 𝑤 in the i-th neuron whose
output is ℎ&".



Stacking multiple hidden layers
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ℎ!! ℎ"! ℎ#! ℎ$%"!…….

ℎ!" ℎ"" ℎ#" ℎ$%""…….

…….

ℎ!# ℎ"# ℎ## ℎ$%"#…….

…….

ℎ! = 𝜎(𝑊"ℎ" + 𝑏")

ℎ# = 𝜎(𝑊!ℎ! + 𝑏!)

Intuition:
High-level feature
(semantic, etc.)

Low-level feature
(syntactic, etc.)

Raw feature
(n-gram, etc.)

This is called a multi-layer perceptron (MLP) or a feedforward neural network.
It’s the simplest type of neural network. (we will learn about more complicated ones in these two
lectures)

Notation: The “2” here does not mean
squared. It means the second layer.



Choice of activation function
• The sigmoid function 𝜎 is one type of activation function.
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Tanh and ReLU have been empirically shown
to outperform sigmoid.



Real neurons in brain
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Remember that we
are doing “artificial”
neural network.

I don’t think there’s
any transformer or
lstm in our brain!



The importance of non-linearity
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Figure from
https://towardsdatascience.com/l
ogistic-regression-and-decision-
boundary-eab6e00c1e8

A linear transform (e.g., 𝑦 = 𝑊𝑥) can only give a linear decision boundary.
And the stacking of linear transforms (e.g., 𝑦 = 𝑊+𝑊,𝑊-𝑥) is still a linear transform.
The existence of non-linearity in NN is the key reason to make it powerful.



Summary: a NN model defines a series of computation
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.𝑥

ℎ'

ℎ' = 𝑊#$%#& .𝑥

𝑎(

𝑎( = 𝑊'ℎ' + 𝑏'

ℎ(

ℎ( = 𝜎(𝑎()

𝑎)

𝑎) = 𝑊(ℎ( + 𝑏(

ℎ)

ℎ) = 𝜎(𝑎))

z =𝑊*+,ℎ) + 𝑏*+,
𝑧
log-softmax

log P(y|x)

<- We call this a computational graph of a NN model.

It defines the dependency of (intermediate) variables.
And it’s a directed acyclic graph (DAG).

In order to compute all values, we only need to follow
the topological order.

S0

S1

S2

S3

S4

S5

S6



How to get the topologically sorted order
Blackboard Example (we will need this for recurrent NN!)

23

𝑥4 𝑥+ 𝑥,

ℎ4 ℎ+ ℎ,

𝑦4 𝑦+ 𝑦,

S0

S1

S2

S3

S4

S5



How to get the topologically sorted order (from wiki)
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Back-propagation (Goal)

• Now, to do SGD we need to get gradient for the
parameters 𝜃 = {𝑊!"#, 𝑏!"#,𝑊$, 𝑏$,𝑊%, 𝑏%,𝑊&'(&)}.

• Remember our loss is 𝐿 = −log𝑃(𝑦|𝑥).

• First, we will use the back-propagation algorithm to get
the error vectors {*+

*,
, *+
*--

, *+
*.-

, *+
*-.

, *+
*..

, *+
*-/

}.

• Note: the error vectors are row vectors.

• Don’t be intimated! It’s just chain rule! e.g., *+
*--

= *+
*,

*,
*--

• Assume we have computed *+
*,
, *,
*--

is just the derivative
of a simple linear function.
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.𝑥

ℎ'

ℎ' = 𝑊#$%#& .𝑥

𝑎(

𝑎( = 𝑊'ℎ' + 𝑏'

ℎ(

ℎ( = 𝜎(𝑎()

𝑎)

𝑎) = 𝑊(ℎ( + 𝑏(

ℎ)

ℎ) = 𝜎(𝑎))

z =𝑊*+,ℎ) + 𝑏*+,
𝑧
log-softmax

log P(y|x)



Back-propagation (Derivative of each step)
• Remember that NN consists of a series of relatively simple function (e.g.,
linear transform or sigmoid).

• The Jacobian of each function can be easily derived by applying basic
calculus.

• For example:

• eq1: '(
!

')"
= '*")"+,"

')"
= 𝑊" <- for today, just remember this one

• eq2: '-./0(2|4)'6 = '-./-8.9:;<= 6 [2]
'6 = softmax 𝑧 − -𝑦 @, where -𝑦 is the

one-hot encoding of ground-truth label 𝑦.

• eq3: ')
!

'(! =
'A((!)
'(! = diag[𝜎 𝑎# ⨀ 1 − 𝜎 𝑎# ],where⨀ is element-

wise multiplication.
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.𝑥

ℎ'

ℎ' = 𝑊#$%#& .𝑥

𝑎(

𝑎( = 𝑊'ℎ' + 𝑏'

ℎ(

ℎ( = 𝜎(𝑎()

𝑎)

𝑎) = 𝑊(ℎ( + 𝑏(

ℎ)

ℎ) = 𝜎(𝑎))

z =𝑊*+,ℎ) + 𝑏*+,
𝑧
log-softmax

L=log P(y|x)



Back-propagation (error vector computation)
• Now, we have everything we need to compute the error
vectors. We just follow the reverse topological order.

• S0: compute 5657, by eq2 (log-softmax).

• S1: compute 56
58! =

56
57

57
58!, by eq1 (linear).

• S2: compute 56
59! =

56
58!

58!

59!, by eq3 (sigmoid).
• ……

• S6: compute 56
58" =

56
59#

59#

58"

• Every step is a vector (error vector from last step)-matrix
(Jacobian) multiplication.
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.𝑥

ℎ'

ℎ' = 𝑊#$%#& .𝑥

𝑎(

𝑎( = 𝑊'ℎ' + 𝑏'

ℎ(

ℎ( = 𝜎(𝑎()

𝑎)

𝑎) = 𝑊(ℎ( + 𝑏(

ℎ)

ℎ) = 𝜎(𝑎))

z =𝑊*+,ℎ) + 𝑏*+,
𝑧
log-softmax

log P(y|x)

S5

S4

S3

S2

S1

S0



Back-propagation (error vector computation)

• Remark: If we expand 56
58":

• 56
58" =

56
59#

59#

58" =
56
57

57
58!

58!

59!
59!

58#
58#

59#
59#

58"

= 56
57
𝑊:;< 58!

59!
𝑊+ 58#

59#
𝑊4 <- expand the linear terms

Exercise: check this still works if the hidden layers (ℎ4, ℎ+, ℎ,)
have different dimensions.

• As we stack more hidden layers, the error vectors of lower
layers involves more matrix multiplications. This gives some
intuition why deeper NN are harder to train.
• (we will revisit this in recurrent NN)
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.𝑥

ℎ'

ℎ' = 𝑊#$%#& .𝑥

𝑎(

𝑎( = 𝑊'ℎ' + 𝑏'

ℎ(

ℎ( = 𝜎(𝑎()

𝑎)

𝑎) = 𝑊(ℎ( + 𝑏(

ℎ)

ℎ) = 𝜎(𝑎))

z =𝑊*+,ℎ) + 𝑏*+,
𝑧
log-softmax

log P(y|x)



Gradient of each parameter
Grey parts for left for exercise
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.𝑥

ℎ'

ℎ' = 𝑊#$%#& .𝑥

𝑎(

𝑎( = 𝑊'ℎ' + 𝑏'

ℎ(

ℎ( = 𝜎(𝑎()

𝑎)

𝑎) = 𝑊(ℎ( + 𝑏(

ℎ)

ℎ) = 𝜎(𝑎))

z =𝑊*+,ℎ) + 𝑏*+,
𝑧
log-softmax

log P(y|x)• Where the error vectors computed, we can apply chain rule
again to get the gradient of each parameter.
• For example:

• 56
5=# =

56
59!

59!

5=# =
56
59!

>
(ℎ+)>

• How? Think about each element𝑊?@
+

• 56
5=$%

# =
56
59$

!
5=$

#8#AB$
#

5=$%
# = 56

59$
! ℎ@+, where the first equation is

because𝑊?@only affects 𝑎?.

• We also have:

• 56
5B#

= 56
59!

59!

5B#
= 56

59!
5=#8#AB#

5B#
= 56

59!
⋅ 𝐼 = 56

59!



The tough part is over!
Relax: what it’s like in pytorch
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• #Below is not real code but it’s very close:

• model = sequential(Linear, Sigmoid, Linear, Sigmoid, Linear) #defines the computation graph
• z = model(x)
• loss = log-softmax(z, y) #forward and compute loss
• loss.backward() #backward and gradient computation

• #print(model[0].weight.gradient)
• optimizer.step() #do a SGD step



Brief summary
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Encoder

x: This restaurant is great!

D-dim h

Linear
Transform

z
softmax

P(y|x)

FO
RW

AR
D

BACKW
ARD

We now know how to forward and backward a feedforward NN.
Later we will see more complicated recurrent NN, transformers, etc. But as long as we know the
structure of the computational graph, it’s the same!

The graph of a
transformer
model.



Neural Network Language Model
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• We will now introduce a series of NNLM.

• Review of the trigram model:

𝑞 𝑤$ 𝑤$GH, 𝑤$G! =
count(𝑤$GH, 𝑤$G!, 𝑤$)
count(𝑤$GH, 𝑤$G!)

• Using what we have learnt, how would you build a NN version of the
n-gram LM?



A feedforward NN LM
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• Note a big difference with the sentiment classifier is that the output class number is now |V|,
making the model slow. Proposed remedies: class-based LM or noise contrastive estimation.

embed(𝑤0!)) embed(𝑤0!()

Linear & softmax

ℎ

Linear & tanh

𝑃(𝑊0|𝑤0!)𝑤0!()

𝐿 = J
1!"#,1!"$ ,1! ∈&454

−log𝑃 (𝑤0|𝑤0!)𝑤0!()



Recurrent neural network language model
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• The (F)NNLM only encodes a very limited context (n-gram).

• RNN defines an efficient flow of computation to encode the whole history 𝑤!… .𝑤B%".
• The RNN maintains a hidden state ℎB which is updated at each time step.

ℎB = 𝜎(𝑊&)𝑥B +𝑊))ℎB%" + 𝑏)
• Important: The parameters {𝑊&),𝑊))} are shared across timesteps (hence the name recurrent).

𝑥' = embed(𝑤')

ℎ'

𝑥(

ℎ(

𝑥)

ℎ) ……

𝑥6

ℎ6



Recurrent neural network language model
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• Complete formulation:
ℎB = 𝜎 𝑊&)𝑥B +𝑊))ℎB%" + 𝑏)
yB = softmax(𝑊)CℎB + 𝑏C)
L(w)=∑& -log𝑃(𝑤&|𝑤!..&%")

• It’s efficient: During training, we just feed the sequence (sentence) once into the RNN, and we get
the output (loss) on every timestep.

𝑥' = embed(𝑤')

ℎ'

𝑥(

ℎ(

𝑥)

ℎ) ……

𝑃(𝑊(|𝑤') 𝑃(𝑊)|𝑤'𝑤() 𝑃(𝑊6|𝑤'𝑤(𝑤))



Generation with RNNLM
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• We can do text generation with a trained RNNLM:

• At each time step 𝑡, we sample 𝑤B from 𝑃(𝑊B| … ), and feed it to the next timestep!

• LM with this kind of generation process is called autoregressive LM.

𝑥' = embed(𝑤')

ℎ'

𝑥(

ℎ(

𝑥)

ℎ) ……

𝑃(𝑊(|𝑤') 𝑃(𝑊)|𝑤'𝑤() 𝑃(𝑊6|𝑤'𝑤(𝑤))

Sample 𝑤( Sample 𝑤)

A Beginning-of-sentence
(BOS) token



RNN for text classification
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𝑥' = embed(𝑤')

ℎ'

𝑥(

ℎ(

𝑥)

ℎ) ……

𝑥7

ℎ7

𝑃(𝐶|𝑤)

• The last hidden state ℎBcan be regarded as an encoding of the whole sentence, on which you can
add a linear classifier head.

This restaurant is ….. wonderful



(Brief) Word2vec
• The Word2vec project shows that if we just
want the word embeddings, it can be trained
in a very efficient way.

• Its training adopts the principle of
distributional hypothesis.
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Word2Vec: The vector arithmetic

• We found the trained embeddings have amazing
arithmetic properties.

• For example:
• emb(king)-emb(man)+emb(woman)=emb(queen)!
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Word2Vec for initialization

• The training of word2vec can be done very efficiently on large
unsupervised data (due to speed-up techniques like negative sampling).

• A good strategy: First pretrain a set of good word embeddings with a large
corpora. Then use it to initialize the embedding layer of your NN model.
And finally finetune it on labeled data (e.g., for classification).
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Recommended reading
• Definitely play with some pytorch (official) tutorials. (you don’t need GPU to do that)

• The deep learning book Chapter 6
• https://www.deeplearningbook.org/contents/mlp.html

• The word2vec paper:
• https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b
-Paper.pdf
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Thanks!

• Next lecture, we will continue to LSTM, attention, transformers, etc.
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