
Algorithms and Protocols
for a Trustworthy
Cyberspace in the Era of
Large Language Models

Tianxing He
University of Washington
Oct 2023

1

2

Towards a Trustworthy Cyberspace with LLMs

• The widening adoption of large language models (LLMs) on cloud brings urgent
problems related to privacy and social engineering.

• How do we establish trust server and user ?

4

UsersCloud Server

Privacy, Copyright,
Factuality, Alignment, etc.

Social Engineering (propaganda,
misinformation), Jailbreak, etc.

New challenges call for novel protocols/algorithms!

6

More specifically,
my work focus on the
generation aspect.

1. How can the server prevent malicious users
from using the generation for misinformation?
SemStamp: A Semantic Watermark Algorithm
H*Z*H*WCWSVKT, arXiv, 2023

2. How can users hide prompt or generated text
from the server (privacy-aware generation)?
LatticeGen: A Cooperative Protocol for Privacy-
Aware Generation.
Z*H*WMMCWT, arXiv, 2023

UsersCloud Server

Basic: Auto-Regressive Language Model

• LM assigns a probability P!(𝑊":$) to a given sentence 𝑊":$

• Auto-regressive LMs predict the next token 𝑊% given history 𝑊":%&".
log𝑃! 𝑊 = ∑ log𝑃!(𝑊%|𝑊":%&")

• The GPT series are all autoregressive LMs.

7

• Modeling: Recurrent Neural Network / LSTM / Transformer

Our focus today is NOT
about BERT, which is a
masked language model.

Generation: sampled
token is fed as input
for next time-step

Outline
Questions welcomed during slide switches

• SemStamp: A Semantic Watermark with Paraphrastic
Robustness for Text Generation

• LatticeGen: A Cooperative Framework which Hides
Generated Text in a Lattice For Privacy-Aware
Generation on Cloud
Z*H*WMMCWT, arXiv, 2023

9

Watermarked Generation for LLM

• Watermarked generation: an approach which facilitates
the detection of machine-generated text by adding algorithmically detectable
signatures during LLM generation which are imperceptible to humans.

11

The Baseline Token-
Level Algorithm

• The baseline algorithm operates by adding bias to a green-listed (G) subset of V.
• The green list is pseudo-randomly generated by using the previous token as the hash.
• The detection is determined by counting green-listed tokens in a given document.

The Baseline Token-Level Algorithm: Weakness

• Weakness:
(1) The token-level noise hurts quality. (damages PPL)
(2) Could be vulnerable to paraphrase attack. (Considering the hash is from the

previous token)

Bi-gram Paraphrase Attack
• After beam-search (Pegasus) we get N(20) paraphrases.

• We select the beam with the lowest bigram overlap with the original
sentence.

• This gives 3%~4% drop for the baseline alg.

Example Generation Sentence (SemStamp): It’s not the same thing as a marketing campaign, but it is a
good starting point.

Paraphrase: It isn’t the same as a marketing campaign, but it is a good starting point.

Bigram Paraphrase: It’s not a marketing campaign, but it’s a good start.

SemStamp: A Semantic Watermark

• We propose a sentence-level semantic watermark algorithm.

• We apply the masking on sentence-level “semantic space”,
instead of token-level.

• There are two core components:
(1) semantic encoder robust to paraphrasing (SentenceBert).
(2) Space partition and masking. (Locality-Sensitive Hashing, LSH)

Proposed: Semantic Watermark

• Each node represents a potential
next sentence.

• LSH partitions the semantic space
by random planes. We apply a
watermark mask on randomly
selected partitions (green).

Overview: Rejection-Sampling

• In our hyper-parameter setting, we need to sample around 14
sentences for a valid sample. We are trading speed for watermarking.

18

Robustness to Paraphrase Attack

• Assuming the robustness of the embedder
(enhanced by contrastive learning), the LSH
signature of the paraphrased sentence does
not change.

Trick: Reject Generation Close to LSH Boundary

• In practice, we find that even after CL, the LSH code is not robust enough to
paraphrasing (LSH accuracy under para. only ~70%).

• To alleviate this, we propose to add a rejection margin, and only accept sentences
whose cos-sim with the normal vectors is larger than a margin (0.02).

Result: Improved Robustness

21

Outline
Questions welcomed during slide switches

• LatticeGen: A Cooperative Framework which Hides
Generated Text in a Lattice For Privacy-Aware
Generation on Cloud

25

26

In the current prompted generation interface, the server has full
control of the generation process, leaving zero option for users who
want to keep the prompt or generated text to themselves.

Motivation: Generated Text (also) Needs Obfuscation

• We argue that generated text also needs obfuscation because it
affects the users’ real-life decisions.

• e.g., a customer is likely to go to the restaurant suggested
by the LLM; an engineer could adopt the approach proposed
by the LLM; a writer could take inspiration from outputs
provided by the LLM, etc.

• Most work on NLP privacy (e.g., DP-SGD) focus on protecting the
training data.

27

Motivation: Generated Text (also) Needs Obfuscation

28

Regulation maybe not enough!
LatticeGen provides an
algorithmic approach to protect
user privacy.

Intuition of LatticeGen:
Hiding Generated Text in a Lattice

29

Example Outcome:
This is a (shuffled) 2-lattice (N=2).

The user knows the true
sequence, but the server does
not.

The prompt can also be protected in the lattice, and is
omitted in this figure.

LatticeGen: High-Level Input & Output
• The user gives a prompt (e.g., “Say a sci-fi story.”) to the LG client. The client only

needs communication with the LLM server, and is supposed to protect user’s privacy
from the server. The client code could be open-sourced, and run by user on any
laptop with a private config without involving a third-party.
• Assuming the server agrees to follow the LG protocol, the client handles the LG

interactions with the cloud LLM server. (<-major focus of this project!)
• Finally, the client returns the generation to user.

30

User Cloud Server

LatticeGen Protocols
Privacy-aware Cooperative GenerationLG

Client
(open-source)

Prompt

Generation
LLM

LatticeGen: High-Level Input & Output
• As a result, both the server and user gets the same noised lattice.
• The difference is that the user/client knows the true token sequence,

while server does not.

31

User/Client gets:

Server gets:

Key Question: Why Not Just Generate Twice ?

• 1st: The scientist stood there with…
• 2ed: A girl works on challenging…

33

VS

The true sequence is in one
of the two possibilities.

The true sequence is in one of the
2!(upperbound) possibilities.

LatticeGen: Overview

• On each time-step, instead of inference/sample one token, the server
and user cooperatively inference/sample N tokens. (e.g., N=2)

34

Prerequisite: Inference on a Linearized Lattice
• As a prerequisite of LG, we finetune the LLM to make next-word predictions on the
linearized lattice.
• 𝑃(⋅ | -𝑊'

([/𝑤)%]) refers to the next-token prediction distribution on the
position of /𝑤)%.
• Please refer to our paper for how to finetune the LLM to accept this format.

35

Generation Protocol: Server Step at t

• The server makes inference on all of the N tokens from time-step t-1,
and send the prediction distributions as len-|V| vectors to client.

37

Generation Protocol: Client Step at t (Key Step)
• Upon receiving the two distributions, the user knows which of the previous token

is the true one, and generates a true token from it.
• With a noise scheme (e.g., synonym), the client also generates a noise token.
• The user shuffles the two tokens, and send them to server for next time-step.

38

For Better Quality: Incorporating Bigram Units

40

The current inference unit is unigram, which degrades gen-quality a lot.
We can extend to bigram units (enumerate 𝑁(combinations) to trade computation for quality.

Generation Quality Degradation

System PPL Protection

standard 28 None

synonym noise, w.o. lattice 229 N/A

LG, unigram, synonym noise 33 Poor

LG, unigram, mixing noise (to be
discussed soon)

73 Good

LG, bigram, mixing noise 64 Good
41

LatticeGen trades quality for protection (<- to be discussed soon).
Directly adding noise to text w.o. lattice would induce drastic degradation.

Attack (Server) & Defense (Client): Overview

42

To defend against a hypothetically malicious server, we will begin a
sequence of thought-adversarial game:
• What would a malicious server do to attack?
• How can client/user defense?

User Cloud Server

LG
Client

(open-source)

Attack
Decoding

Defense
Noise Scheme

The Beam-Search Attack (Server)

• Knowing that the true token is among the N tokens on each time-step,
a nature attack objective is to find the maximizing-prob sequence:

• This can be solved by a simple dynamic programming.

43

The Beam-Search Attack (Server)

• The BS attack is very effective against the synonym scheme.

44

The Parallel Noise Scheme (User)

• The user can evade BS by using a parallel scheme with radical sampling.

45

The Repeated Beam-Search Attack
• However, the server can repeatedly call beam-search and remove the

hypothesis from each call.
• RBS is a stronger version of BS.

46

Metric of Protection

• After RBS, the attacker gets N hypotheses, and we care about the
hypothesis with maximum overlap with the true sequence. (the
average is always 1/N)

• The true-ratio only cares about exact match, we also have a
BERTScore variant which measures the revealed semantic, which is
defined in a similar manner.

47

Defense Against RBS: The Mixing Scheme

48

• Under RBS, we realize that the true and noise sequence have to be mixed
together.
• With a mix-ratio (0.1), we achieve this by randomly branching from the true

sequence into the noise sequences.

Mixing Scheme Example

49

Results

50

• The synonym scheme is good for utility, but bad under BS/RBS.
• The parallel scheme is good for BS, but bad under RBS.
• The proposed mixing scheme achieves best protection.

Other Work and Interests
• Detection is hard! Especially in zero-shot

cases [1] or under attacks (on-going).

• Designing stress tests for LLM-based NLG
metrics (ACL 2023).

60

[1] On the Zero-Shot Generalization of Machine-Generated Text
Detectors, (Sophia) Xiao Pu et al. EMNLP-Finding 2023

• Interest: Can powerful model help video
game development (e.g., marioGPT)?

Thanks! Questions?
goosehe@cs.washington.edu

